Abstract
Multi-subunit tethering complexes (MTCs) are a family of evolutionarily conserved large protein complexes that function to tether intracellular vesicles from the donor compartments to the membrane of receptor compartments. The exocyst complex is an octameric MTC that tethers the post-Golgi secretory vesicles to the plasma membrane. To learn the function and regulation of the exocyst complex, it is crucial to understand the structure of the complex. We have solved the cryo-EM structure of the exocyst complex at 4.4Angstrom (Å) resolution and detected the spatial relationship between the eight subunits using chemical cross-linking mass spectrometry. Here, we describe the method of modeling and validating the cryo-EM structure of the exocyst complex. This method could provide a guide for modeling of other protein complexes of which the structures are solved at medium to near-atomic resolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.