Abstract

Exposure of 2024-T3 Al alloy to an elastic loading, either for “creep age forming” and other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The high-temperature creep behavior of 2024-T3 Al alloy was studied by the constant-stress uniaxial tensile creep experiments under the temperatures of 423, 448 and 473K. Constitutive models, based on the θ projection method, are established to describe the high-temperature creep behavior of 2024-T3 Al alloy. The material parameters of the established constitutive models are associated with the applied creep stress and temperature. The creep strains predicted by the proposed models well agree with experimental results, which confirm that the established creep constitutive models can give an accurate and precise estimate of the high-temperature creep behavior for 2024-T3 Al alloy. The evaluated power–law stress exponent n=3.405 and the activation energy for secondary creep Q=85.390kJmol−1 indicate that the creep processes of 2024-T3 Al alloy are controlled by the dislocation viscous glide mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.