Abstract

This paper is devoted to the development of an algorithm for numerical modeling convective thermal heat transfer of nanofluids with carbon nanotubes. The algorithm is based on a one-liquid description of a nanofluid with common macroscopic variables. The properties of the nanofluid are determined only by the concentration of carbon tubes, and it is assumed that their distribution is uniform and does not change during the flow. A nanofluid can have both Newtonian and non-Newtonian rheology. The fundamental point of this algorithm is the need to use real thermophysical data in solving specific problems, which depend on the concentration of carbon nanotubes naturally. The transport equations are solved using finite volume method. The algorithm was tested by comparing the simulation data with the experimental. The problem of convective thermal exchange of nanofluid with single-walled nanotubes is solved. The corresponding experimental data were previously obtained by the authors of this work. It is shown that the algorithm simulates the considered flow with high accuracy. In addition, its important advantage is the possibility of modeling the flow characteristics, which cannot be measured experimentally. As such example the data on the velocity and temperature profiles of the fluid in the channel are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.