Abstract

Corrosive wear of cylinder liners in large two-stroke marine diesel engines that burn heavy fuel oil containing sulfur is coupled to the formation of gaseous sulfur trioxide (SO3) and subsequent combined condensation of sulfuric acid (H2SO4) and water (H2O) vapor. The present work seeks to address how fuel sulfur content, charge air humidity and liner temperature variations affects the deposition of water and sulfuric acid at low load operation. A phenomenological engine model is applied to simulate the formation of cylinder/bulk gas combustion products and dew points comply with H2O–H2SO4 vapor liquid equilibrium. By assuming homogenous cylinder gas mixtures condensation is modeled using a convective heat and mass transfer analogy combined with realistic liner temperature profiles. Condensation of water is significantly altered by the liner temperature and charge air humidity while sulfuric acid condensation (the order is a few mg per cylinder every cycle) is proportional to the fuel sulfur content. Condensation takes place primarily in the upper part of the cylinder liner where a reduction of the surface temperature or saturated charge air provides that the deposited acid can be highly diluted with water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.