Abstract
Abstract Compressive strength is a major and significant mechanical property of concrete which is considered as one of the important parameters in many design codes and standards. Early and accurate estimation of it can save in time and cost. In this study, extreme learning machine (ELM) was used to predict the compressive strength of high-strength concrete (HSC). ELM is a relatively new method for training artificial neural networks (ANN), showing good generalization performance and fast learning speed in many regression applications. ELM model was developed using 324 data records obtained from laboratory experiments. The compressive strength was modeled as a function of five input variables: water, cement, fine aggregate, coarse aggregate, and superplasticizer. The performance of the developed ELM model was compared with that of ANN model trained by using back propagation (BP) algorithm. The simulation results show that the proposed ELM model has a strong potential for predicting the compressive strength of HSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.