Abstract

The potential formation of multi-mega-ampere beams of relativistic ‘runaway’ electrons (REs) during sudden terminations of tokamak plasmas poses a significant challenge to the tokamak’s development as a fusion energy source. Here, we use state-of-the-art modeling of disruption magnetohydrodynamics coupled with a self-consistent evolution of RE generation and transport to show that a non-axisymmetric in-vessel coil will passively prevent RE beam formation during disruptions in the SPARC tokamak, a compact, high-field, high-current device capable of achieving a fusion gain Q > 2 in deuterium–tritium plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call