Abstract

Operators on naval ships have to act in dynamic, critical and high-demand task environments. For these environments, a cognitive task load (CTL) model has been proposed as foundation of three operator support functions: adaptive task allocation, cognitive aids and resource feedback. This paper presents the construction of such a model as a Bayesian network with probability relationships between CTL and performance. The network is trained and tested with two datasets: operator performance with an adaptive user interface in a lab-setting and operator performance on a high-tech sailing ship. The “Naïve Bayesian network” tuned out to be the best choice, providing performance estimations with 86% and 74% accuracy for respectively the lab and ship data. Overall, the resulting model nicely generalizes over the two datasets. It will be used to estimate operator performance under momentary CTL-conditions, and to set the thresholds of the load-mitigation strategies for the three support functions.Keywordsmental loademotionBayesian networkscognitive engineeringDefense and Space operations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.