Abstract
We propose a new method for modeling the well-known phenomenon of “bursting behavior” in neuron systems by invoking delay equations. Namely, we consider a singularly perturbed nonlinear difference-differential equation with two delays describing the functioning of an isolated neuron. Under a suitable choice of parameters, we establish the existence of a stable periodic motion with any prescribed number of spikes on a closed time interval equal to the period length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.