Abstract

Abstract A second-order turbulence closure model is used to study the development of the benthic boundary layer. Results are presented on the effects of a time-dependent oscillatory forcing flow and an initially stably stratified density gradient. Using typical values for the deep ocean, the model suggests a development time for the layer of ∼10 days. The results of the model show that for a neutrally stratified layer, although the flow is oscillating, the turbulence is essentially in local equilibrium and that an eddy viscosity approach is appropriate to determine the equilibrium boundary-layer height. The time development of the two models was however different. For an initially stratified case, although local shear production of turbulence is suppressed nest the top of the layer, diffusive effects enable the boundary layer to continue growing past a height set by a critical value of the Richardson number based on shear flow stability arguments. Attempts to relate the growth rate of the boundary layer t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.