Abstract

Growth of biological tissues and shape changes of thin synthetic sheets are commonly induced by stimulation of isolated regions (inclusions) in the system. These inclusions apply internal forces on their surroundings that, in turn, promote 2D layers to acquire complex 3D configurations. We focus on a fundamental building block of these systems, and consider a circular plate that contains an inclusion with dilative strains. Based on the Föppl-von Kármán (FvK) theory, we derive an analytical model that predicts the 2D-to-3D shape transitions in the system. Our findings are summarized in a phase diagram that reveals two distinct configurations in the post-buckling region. One is an extensive profile that holds close to the threshold of the instability, and the second is a localized profile, which preempts the extensive solution beyond the buckling threshold. While the former solution is derived as a perturbation around the flat configuration, assuming infinitesimal amplitudes, the latter solution is derived around a buckled state that is highly localized. We show that up to vanishingly small corrections that scale with the thickness, this localized configuration is equivalent to that expected for ultra-thin sheets, which completely relax compressive stresses. Our findings agree quantitatively with direct numerical minimization of the FvK energy. Furthermore, we extend the theory to describe shape transitions in polymeric gels, and compare the results with numerical simulations that account for the complete elastodynamic behavior of the gels. The agreement between the theory and these simulations indicates that our results are observable experimentally. Notably, our findings can provide guidelines to the analysis of more complicated systems that encompass interaction between several buckled inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.