Abstract
The uptake of persistent organic pollutants (POPs) from soil by plants allows the development of phytoremediation protocols to rehabilitate contaminated areas. In this study theoretical descriptors have been employed as independent variables for developing quantitative structure-activity relationship (QSAR) models for predicting the bioconcentration factors (BCFs) of POPs in different plants. A quantitative estimation has been given on the molecular properties of POPs in terms of theoretical molecular descriptors that are relevant to the uptake from soil and pharmacokinetic behavior in plants. The study resulted in statistically significant linear regression models developed for the BCF values of 20 polychlorinated dibenzo-p-dioxins/dibenzofurans and 14 polyhalogenated biphenyls in two zucchini varieties based on retrospective data. The parameters have been selected from a set of 1660 DRAGON, 150 VolSurf and 11 Quantum Chemical descriptors. The best regression model (Eq. 1), employing VolSurf, DRAGON GETA...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.