Abstract

Bacteria such as Escherichia coli propel themselves by rotating a bundle of helical filaments, each driven by a rotary motor embedded in the cell membrane. Each filament is an assembly of thousands of copies of the protein flagellin which assumes two different states. We model the filament by an elastic network of rigid bodies that form bonds with one another according to a scheme suggested by Namba and Vondervistz (1997 Q. Rev. Biophys. 30 1–65) and add additional binding sites at the inner part of the rigid body. Our model reproduces the helical parameters of the 12 possible polymorphic configurations very well. We demonstrate that its energetical ground state corresponds to the normal helical form, usually observed in nature, only when inner and outer binding sites of the rigid body have a large axial displacement. This finding correlates directly to the elongated shape of the flagellin molecule. An Ising Hamiltonian in our model directly addresses the two states of the flagellin protein. It contains an external field that represents external parameters which allow us to alter the ground state of the filament.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.