Abstract

The atomic mobilities of Au, In, Pb, and Sn in face-centered cubic Pb-Sn and Pb-In alloys are modeled using the available literature data. A set of parameters describing the composition and temperature dependence of diffusional mobility are provided. The calculated tracer diffusivities of Pb in ternary Pb-Sn-In and Pb-Sn-Au alloys are in very good agreement with the experimental data. Using the model parameters, both tracer and chemical diffusivities can be calculated in the composition and temperature ranges where experimental data is not available. On the assumption of local equilibrium, the simulation of dissolution kinetics of Pd in liquid Pb is demonstrated. The major source of discrepancy between the calculated and experimental diffusion profiles is the uncertainty of the atomic transport kinetics data in the liquid phase. The implications of current kinetic modeling are discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.