Abstract
Structural, electronic, binding energies and magnetic properties of aluminum-doped and single vacancy blue phosphorene interacting with pollutant molecules are investigated using the density functional theory (DFT) with periodic boundary conditions. Acetylene, ozone, sulfur trioxide, hydrogen selenide, and sulfur dichloride molecules are considered to show the efficiency and enhancement of the sensing properties in comparison with the pristine blue phosphorene. Acetylene, sulfur trioxide, hydrogen selenide, and sulfur dichloride show chemisorption (> 0.5eV/molecule) when interacting with the aluminum-doped system, but the ozone molecule dissociates in all configurations and symmetry sites. On the other hand, the acetylene, ozone, and sulfur trioxide with the single vacancy blue phosphorene exhibit chemisorption, the hydrogen selenide molecule exhibit a weak interaction energy, and the sulfur dichloride dissociates in all configurations and symmetry sites. In all the cases, the enhancement in the interaction energy was achieved when compared to other results for the same molecules. Finally, the single vacancy blue phosphorene shows a magnetic moment of ~1 μB/supercell, as induced by the vacancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.