Abstract

Numerical modeling of Blocked Impurity Band (BIB) detectors is performed using a four-region finite difference approach to study the role of blocking layer thickness and minority doping concentration in alternate bias operation and the role of space charge in C-V (capacitance-voltage) profiling of minority carrier doping. Compensation in the blocking layer is found to play a critical role in determining the net voltage drop in this part of the device under alternate polarity bias. The effect of space charge at the blocking layer/active layer interface on the measured low temperature C-V distribution is modeled as a function of the doping interface between the two layers. The magnitude of the space charge can cause large deviations in the measurement of minority doping concentration from the idealized case which assumes a space-charge free blocking layer and interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call