Abstract

In this work we model and realize stimulated Raman adiabatic passage (STIRAP) in the diatomic $\mathrm{^{23}Na^{40}K}$ molecule from weakly bound Feshbach molecules to the rovibronic ground state via the $\left|v_d=5,J=\Omega=1\right\rangle$ excited state in the $d^3\Pi$ electronic potential. We demonstrate how to set up a quantitative model for polar molecule production by taking into account the rich internal structure of the molecules and the coupling laser phase noise. We find excellent agreement between the model predictions and the experiment, demonstrating the applicability of the model in the search of an ideal STIRAP transfer path. In total we produce 5000 fermionic groundstate molecules. The typical phase-space density of the sample is 0.03 and induced dipole moments of up to 0.54 Debye could be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.