Abstract

BackgroundThe Northwest Atlantic (NWA) leatherback turtle (Dermochelys coriacea) subpopulation is one of the last healthy ones on Earth. Its conservation is thus of major importance for the conservation of the species itself. While adults are relatively well monitored, pelagic juveniles remain largely unobserved. In an attempt to reduce this knowledge gap, this paper presents the first detailed simulation of the open ocean dispersal of juveniles born on the main nesting beaches of French Guiana and Suriname (FGS).MethodsDispersal is simulated using STAMM, an Individual Based Model in which juveniles actively disperse under the combined effects of oceanic currents and habitat-driven movements. For comparison purposes, passive dispersal under the sole effect of oceanic currents is also simulated.ResultsSimulation results show that oceanic currents lead juveniles to cross the Atlantic at mid-latitudes. Unlike passive individuals, active juveniles undertake important north-south seasonal migrations while crossing the North Atlantic. They finally reach the European or North African coast and enter the Mediterranean Sea. Less than 4-year-old active turtles first arrive off Mauritania. Other productive areas on the eastern side of the Atlantic (the coast of Galicia and Portugal, the Gulf of Cadiz, the Bay of Biscay) and in the Mediterranean Sea are first reached by 6 to 9-year-old individuals. This active dispersal scheme, and its timing, appear to be consistent with all available stranding and bycatch data gathered on the Atlantic and Mediterranean coasts of Europe and North Africa. Simulation results also suggest that the timing of the dispersal and the quality of the habitats encountered by juveniles can, at least partly, explain why the NWA leatherback subpopulation is doing much better than the West Pacific one.ConclusionThis paper provides the first detailed simulation of the spatial and temporal distribution of juvenile leatherback turtles dispersing from their FGS nesting beaches into the North Atlantic Ocean and Mediterranean Sea. Simulation results, corroborated by stranding and bycatch data, pinpoint several important developmental areas on the eastern side of the Atlantic Ocean and in the Mediterranean Sea. These results shall help focus observation and conservation efforts in these critical areas.

Highlights

  • The Northwest Atlantic (NWA) leatherback turtle (Dermochelys coriacea) subpopulation is one of the last healthy ones on Earth

  • It comprises several nesting aggregations extending from French Guiana to Florida, including the whole mainland and insular Caribbean area

  • In an attempt to shed light on the lost years of this population, we present and analyse here the first numerical simulations of the long-term dispersal of NWA leatherback hatchlings emerging from the French Guiana and Suriname (FGS) nesting beaches

Read more

Summary

Introduction

The Northwest Atlantic (NWA) leatherback turtle (Dermochelys coriacea) subpopulation is one of the last healthy ones on Earth. With about 50,000 nests in 2010, and likely growing, this subpopulation is of major importance for the conservation of the species [1] It comprises several nesting aggregations extending from French Guiana to Florida, including the whole mainland and insular Caribbean area. Adult males have been much less tracked but the few existing data suggest that males occupy the same foraging grounds as females and migrate, possibly every year, to be present near the nesting beaches early in the nesting season (spring). They stay there for a couple months, and likely breed, before migrating back towards their foraging grounds [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.