Abstract
We propose a model that explains the acid–base surface properties of clastic sediments from two Argentinean reservoir lakes. The model uses potentiometric titration data sets and fixed parameters such as the apparent stability constants and reaction stoichiometries of acid–base equilibriums involving known mineral phases. The model considers that sediments act as a set of independent sorption surfaces, such as organic matter, clay silicate, and iron (hydr)oxides, thus the acid–base equilibrium and the correspondent protolytic constants are represented by a humic acid, a Na-illite, and a poor crystalline Fe-hydr(oxide). In agreement with experimental data, the model predicts that all sediment samples show a similar charging behavior, increasing the negative charge as the pH increases. The net charge of sediments is controlled by the presence of negatively charged minerals and/or organic matter coatings. This reveals the great influence of clays and organic matter functional groups on the acid–base surface properties of sediments, and consequently on the surface reactivity toward contaminant transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.