Abstract
The purpose of this work is to model ternary mixtures using the theory of pattern formation and of polyelectrolytes, with mean-field approximations. The model has two local, non-conserved order parameters. In the free energy short-range and long-range nonlocal interactions between elements of the mixture are considered. The spatiotemporal dynamics of the system is described by coupling the time-dependent Ginzburg–Landau equation and the Swift–Hohenberg equation. These non-linear partial differential equations are solved with numerical methods to study the emergent spatially stable configurations. The model shows a large diversity of patterns, which permit an interpretation of the behavior of some biological systems and presents different growth lengths within its spatial structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.