Abstract

An advanced discrete element method (DEM), coupled with imaging techniques, of the tensile response of carbon fiber‐reinforced composite materials is presented in this article. DEM was developed using the image‐based shape structural model to determine the composites' elastic modulus, stress–strain response, and tensile strength. The developed model utilizes the microfabric micromechanical discrete element modeling technique. Clusters of very small bonded discrete elements were used to model the two composite constituents (matrix and reinforcement). The microparameters of each discrete element were determined from the macrocharacteristics of each constituent. The results from the developed model were compared with the results from an experimental case study. The results obtained from DEM simulations are within the coefficient of variation of the experimental values. The comparison indicates that the image‐based DEM micromechanical model accurately determines the elastic modulus and tensile strength of the molded carbon fiber‐reinforced polymer composite. POLYM. COMPOS., 34:877–886, 2013. © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.