Abstract
The main objective of this paper is to provide an overview and a critical analysis of the recent literature on incorporating induced technical change in energy systems models. Special emphasis is put on surveying recent studies aimed at integrating learning-by-doing into bottom-up energy systems models through so-called learning curves, and on analyzing the relevance of learning curve analysis for understanding the process of innovation and technology diffusion in the energy sector. The survey indicates that this model work represents a major advance in energy research, and embeds important policy implications, not the least concerning the cost and the timing of environmental policies (including carbon emission constraints). However, bottom-up energy models with endogenous learning are also limited in their characterization of technology diffusion and innovation. While they provide a detailed account of technical options—which is absent in many top-down models—they also lack important aspects of diffusion behavior that are captured in top-down representations. For instance, they often fail in capturing strategic technology diffusion behavior in the energy sector as well as the energy sector's endogenous responses to policy, and they neglect important general equilibrium impacts (such as the opportunity cost of redirecting R&D support to the energy sector). Some suggestions on how innovation and diffusion modeling in bottom-up analysis can be improved are put forward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.