Abstract
In this paper, a strategy for the preliminary design of Quad-Rotor problem with emphasis on utilizing system identification methods for system modeling. The algorithm of forgetting least square is applied for the realtime prediction of the system parameters. The presented strategy is applied to the mass-varying tethered Quad-Rotor. The presented system identification method provides the model parameters while the adaptive (Proportional, Integral, Derivative, and Accelerator) PID-A controller controls the system response in real-time flight. In this paper, a mathematical model for the Quad-Rotor is derived. The sensitivity analys is of the system is provided in detail. Then, a system identification algorithm is applied to study the change in parameters during flight. PID-A controller is designed to stabilize the system with mass-varying consideration. Finally, Simulation results of the full system are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Review of Aerospace Engineering (IREASE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.