Abstract

Plague persists as an enzootic in several very different rodent-flea communities around the world. In California, a diversity of rodent-flea communities maintains the disease, and a single-host reservoir seems unlikely. Logistic regression of plague presence on climate and topographic variables predicts plague in many localities where it is absent. Thus, a dynamic community-based analysis was needed. Deterministic Susceptible Infective Recovered (SIR) models were adapted for plague and analyzed with an eye for insights concerning disease persistence. An R simulation program, Plaguesirs, was developed incorporating multihost and multivector SIR dynamics, demographic and environmental stochasticity, density dependence, and seasonal variation in birth and death. Flea-rodent utilization matrices allowed us to get transmission rates as well as flea carrying capacities. Rodent densities allowed us to estimate host carrying capacities, while maximum birth rates were mainly approximated through an examination of litter phenology and demography. We ran a set of simulations to assess the role of community structure in maintaining plague in a simulated version of Chuchupate campground in Ventura County. Although the actual campground comprises 10 rodent and 19 flea species, we focused on a subset suspected to act as a reservoir community. This included the vole Microtus californicus, the deer mouse Peromyscus maniculatus, the Ceratophyllid fleas Aetheca wagneri and Malareus telchinum, and the Leptopsyllid flea Peromyscopsylla hesperomys. The dynamics of 21 subsets of this community were simulated for 20 years. Single-rodent communities showed much lower disease persistence than two-rodent communities. However, so long as Malareus was present, endemicity was enhanced; removal of the other two fleas slightly increased disease persistence. Two critical features improved disease persistence: (1) host breeding season heterogeneity and (2) host population augmentation (due to two similar host species instead of one). Voles are winter-spring breeders compared to the spring-summer deer mice. While host synchronicity may enhance epidemics, host asynchronicity favors endemics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.