Abstract

A population balance framework based on high order moment conserving method of classes is extended to capture surfactant dynamics and its effect on drop size distributions. The proposed method is flexible for incorporating various closure models for drop breakage and coalescence, mass transfer, and physical equilibria between dispersed and continuous phase as well as for adsorption to the interface. The method is first schematically explained and derived in a generic form, and then appropriate closure models are discussed. The model is accurate and fast and can be implemented in process models, parameter optimization algorithms, and computational fluid dynamics software due to its high accuracy with limited number of additional variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.