Abstract

Formation of planar phospholipid bilayers on solid and porous substrates by Langmuir-Blodgett transfer of monolayers from the air-water interface could be of much greater utility if the process were not irreproducible and poorly understood. To that end the energetics of transferring two phospholipid monolayers to a hydrophilic surface has been examined. An approximate mathematical relationship is formulated that relates the surface pressure of the precursor monolayers to the tension within the bilayer created. Data are presented that demonstrate that bilayer transfer can be carried out reproducibly even with refractory phospholipids such as phosphatidylcholine, but only over a very narrow range of precursor monolayer surface pressures. This range is related to the lysis tension of the bilayer. The morphology of films formed within and below the successful range of surface pressures are examined by fluorescence microscopy, and the observed features are discussed in terms of the relationship above. These results provide practical guidelines for successful formation of lipid bilayers on hydrophilic surfaces; these guidelines should prove useful for research into the properties of biomembranes and for development of bilayer-based biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.