Abstract
A study of the effects of drifts on the particle flow pattern and in–out divertor plasma density asymmetry for L-mode and H-mode plasmas is carried out for EAST discharges by the edge plasma transport codes SOLPS and BOUT++ . The simulation of L-mode plasmas is done by SOLPS while the simulation of H-mode plasmas is done by BOUT++ . The toroidal magnetic field direction for the simulated discharge is artificially reversed in the codes to study the effects of different drift directions on the divertor particle flow pattern and the in–out asymmetry of divertor plasma density. The divertor particle flows induced by diamagnetic and E × B drifts are found to have similar directions in the divertor region for the same discharge. The directions of the flows induced by drifts would be reversed with the reverse of toroidal magnetic field direction. The diamagnetic drift seems to have no effect on the in–out asymmetry of divertor plasma density due to its divergence-free nature. However, the E × B drift could result in a pronounced asymmetry of plasma density between the inner and outer divertor targets. The density in–out asymmetry caused by E × B drift is reversed with the reverse of E × B drift flow direction. Detailed analysis shows that the radial component of the E × B drift flow is the main cause of density asymmetry. The results from the simulation of H-mode plasmas with BOUT++ are similar to those of the L-mode plasmas with SOLPS except that the drift effects seem to be slightly larger in the H-mode plasmas compared to the L-mode plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.