Abstract

Several experimental studies have been conducted to determine the NOx reduction by a series of LNT (lean NOx trap) and SCR (selective catalytic reduction) catalytic bricks. An important goal is to minimize the required precious metal loading in the LNT while keeping the NOx emission below a specified level. We present a mathematical model of this system using hydrogen as the reductant. Simulations are used to determine the influence of the architecture of the LNT–SCR bricks, nonuniform precious metal loading in the LNT bricks, and the cycle time at temperatures in the range of 200–350 °C. The simulations lead to the following observations: (a) Low temperature reduction is the limiting step in the optimization of precious group metal (PGM) loading in LNT. (b) The NOx conversion increases as the number of the sequential bricks (with total length fixed) increase and reaches an asymptotic limit. From a practical point of view, there is little incentive in using more than two sequential pairs. (c) Nonuniform p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.