Abstract
A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.