Abstract

Modern computational approaches based on quantum mechanical methods to characterize structures and optical spectra of biological chromophores in proteins are intensively used to gain knowledge of events occurring upon of their photoexcitation. Primary attention is paid to the species from the family of the green fluorescent protein applied as biomarkers in living cells. We apply quantum chemical approaches for accurate calculations of the structures of the chromophore binding pockets and to estimate spectral bands corresponding to the S<sub>0</sub>-S<sub>1</sub> optical transitions of the intriguing kindling protein asFP595. Its precursor, the chromoprotein asCP from the sea anemony <i>Anemonia sulcata</i> is characterized by distinctive spectral properties: at low light intensities the wild-type protein is weakly fluorescent with the very low quantum yield, however, high intensity irradiation with green light leads to a drastic increase of quantum yield. This phenomenon is now termed "kindling". In simulations, the model system is designed as a molecular cluster constructed on the basis of available crystal structures of the related protein. The equilibrium geometry of the cluster is optimized using density functional theory approximations. The vertical excitation energies corresponding to the S<sub>0</sub>-S<sub>1</sub> transitions are computed by using the semiempirical ZINDO technique. A special attention is paid to evaluate effects of point mutations in the vicinity of the chromophore group. Theoretical data provide important information on the chromophore properties aiming to interpret the results of experimental studies and applications of this fluorescent protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.