Abstract

We propose a new way to include strong velocity discontinuities in the material point method (MPM). We use the recent idea of damage gradient partitioning to dynamically determine whether or not deformed locations of material points are on the same side of a discontinuity as each node of a finite element discretization of the Eulerian velocity field. Velocity basis functions associated with the finite element nodes are then altered to ensure that their contributions to discontinuous components of the velocity are supported only at points assigned to the same side of the discontinuity. The partitioning of material points relative to each finite element node eliminates the need for indexing partitions, and accommodates discontinuities that do not partition material into disjoint bodies (e.g., propagating cracks). By building velocity discontinuities directly into the approximation space, sliding contact, separation, and multi-body interaction are possible within a single velocity field. The methodology avoids the need to track contact surfaces, construct and evolve explicit cracks, or use multiple velocity fields. Several numerical examples are computed to support these claims. The examples are also compared to the conventional MPM, demonstrating the method’s superiority in dealing with sliding contact and separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.