Abstract

Study regionThe New York City water supply watersheds Study focusThis study is a modeling analysis on climate change impact on streamflow using a stochastic weather generator (SWG), a hydrologic model, and downscaled future climate scenarios. Streamflow generated using synthetic time series of precipitation and air temperature from a SWG were compared to those simulated from observed historical and projected future weather. New hydrologic insights for the regionSynthetic weather was able to mimic the observed annual streamflow cycle for the six watersheds studied, including the seasonal pattern as well as magnitude and occurrence of extreme hydrologic events. Streamflow simulations using projected climate from 20 global climate models (GCM) for one of the New York City water supply watersheds indicate the potential for changes in the hydrologic regime in this region. The models indicate a shift in the timing of spring melt runoff from a distinct peak in late March and April under historical (1950–2009) conditions towards earlier in the year for mid-century (2041–2060) period. Results indicate that the region may experience an overall increase in mean streamflow in the future due to the combined effect of decreasing spring runoff peak and increasing streamflow during other seasons. More importantly, the magnitude and frequency of extreme hydrological events are projected to increase under future scenarios. These results have implications for future operation and management of the water supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.