Abstract

Stratospheric intrusion and trans-Pacific transport have been recognized as a potential source of tropospheric ozone over the US. The state-of-the-science Community Multiscale Air Quality (CMAQ) modeling system has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ). In this study, H-CMAQ is applied to study the stratospheric intrusion and trans-Pacific transport during April 2010. The results will be presented in two companion papers. In this Part 1 paper, model evaluation for tropospheric ozone (O3) is presented. Observations at the surface, by ozonesondes and airplane, and by satellite across the Northern Hemisphere are used to evaluate the model performance for O3. H-CMAQ is able to capture surface and boundary layer (defined as surface to 750hPa) O3 with a normalized mean bias (NMB) of -10%; however, a systematic underestimation with an NMB up to -30% is found in the free troposphere (defined as 750-250hPa). In addition, a new air mass characterization method is developed to distinguish influences of stratosphere-troposphere transport (STT) from the effects of photochemistry on O3 levels. This method is developed based on the ratio of O3 and an inert tracer indicating stratospheric O3 to examine the importance of photochemistry, and sequential intrusion from upper layer. During April 2010, on a monthly average basis, the relationship between surface O3 mixing ratios and estimated stratospheric air masses in the troposphere show a slight negative slope, indicating that high surface O3 values are primarily affected by other factors (i.e., emissions), whereas this relationship shows a slight positive slope at elevated sites, indicating that STT has a possible impact at elevated sites. STT shows large day-to-day variations, and STT impacts can either originate from the same air mass over the entire US with an eastward movement found during early April, or stem from different air masses at different locations indicated during late April. Based on this newly established air mass characterization technique, this study can contribute to understanding the role of STT and also the implied importance of emissions leading to high surface O3. Further research focused on emissions is discussed in a subsequent paper (Part 2).

Highlights

  • Tropospheric ozone (O3) is a secondary air pollutant produced by a chain of reactions involving photochemical oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx) (Haagen-Smit and Fox, 1954)

  • These results suggest that the revision of the dynamic Potential vorticity (PV) approach described in Xing et al (2016) led to improved results compared to earlier implementations of the scaling approach, there is a need for further refinement of the approach to better capture high mixing ratios of stratospheric O3

  • The regional chemical transport model Community Multiscale Air Quality (CMAQ) recently extended for hemispheric applications (H-CMAQ) is applied to investigate the relative importance of transPacific and stratospheric transport on tropospheric O3 distributions across the US during April 2010

Read more

Summary

Introduction

Tropospheric ozone (O3) is a secondary air pollutant produced by a chain of reactions involving photochemical oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx) (Haagen-Smit and Fox, 1954). Ground-level O3 poses significant risks to human health, and many countries regulate it as a criterion pollutant with an ambient air quality standard. In the US, the National Ambient Air Quality Standard (NAAQS) for O3 is based on the annual fourth highest maximum daily 8 h concentration (MD8O3) averaged over 3 years, and its threshold values have been decreasing from 80 ppbv in 1997 to 75 ppbv in 2008, and 70 ppbv in 2015 (U.S EPA, 2018). Analysis of trends in surface O3 levels between 1998 and 2013 showed that the highest O3 concentration in the US has been reduced in response to substantial decline of precursors (Simon et al, 2015). It was shown that the O3 concentration on low-O3 days had increased and led to the narrowing of the O3 concentration range across the US

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call