Abstract
The distribution of suspended sediment particles in a steady, uniform and stratified turbulent flow through open-channels is investigated in this study using fractional advection–diffusion equation (FADE). Unlike previous studies on FADE, the FADE is employed with the effects of stratification due to the presence of the sediment particles. Analogous to the approach of stratified flow, the effect of stratification is connected with the damping of the sediment diffusivity. A general model of sediment diffusion coefficient in stratified flow is proposed which changes along vertical direction as well as with the order of the fractional derivative. Finally the model of sediment distribution is derived incorporating the effects of non-local transport of particles, stratification, hindered settling velocity and damping of mixing length. The model is solved numerically using the fractional Adams–Bashforth–Moulton method and solutions are validated with the experimental data. The validation results are satisfactory. The variation of the depth average sediment diffusion coefficient and the proposed model of sediment diffusion coefficient with the fractional order $$\alpha$$ are investigated. The results show that with the decrease of fractional order $$\alpha$$, the value of depth average sediment diffusion coefficient increases and the depth variable sediment diffusion coefficient shows a overall increases throughout the flow depth. The rationality of the dependence of $$\alpha$$ on both types of sediment diffusion coefficients have been justified physically. It is also found that the effect of stratification results a decrease both for the suspension distribution and the sediment diffusion coefficient which is consistent with the results using traditional ADE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.