Abstract

Air-cooled condenser (ACC) design methodologies use empirical correlations that are unable to account for the complex flow phenomena associated with ACCs. Numerical models are seen as an alternative evaluation tool. This paper details the development of a modeling strategy for an ACC in the computational fluid dynamics (CFD) code of OpenFOAM. The axial flow fan is modeled using the extended actuator disk model (EADM) and validated using the B2a-fan. A good agreement between experimental and numerical results are noted for the volumetric flow rates expected in the ACC operating range. The A-frame heat exchanger is also validated using the empirical data. The ACC operating point is numerically and analytically determined. An overprediction of the numerical results to the analytical solution is attributed to the presence of kinetic energy recovery and validated using experimental results. A numerical recovery coefficient of 0.527 is measured and correlates well with the experimentally determined coefficient of 0.553.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.