Abstract
Semi-empirical fouling models have proven more effective in predicting the fouling behavior of crude oils in heat exchangers. These models have aided refineries in optimizing operating conditions to minimize or eliminate fouling in preheat exchangers. Despite their complexity, the models continue to improve in approximating real behavior by taking into account previously neglected aspects. This paper summarizes these findings from various studies along with highlighting different factors which were considered to enhance the predictability of the models. A critical analysis is presented to emphasize that activation energy in the deposition term varies depending on the physical processes involved and may not conform to the precise definition of activation energy. Two primary modeling approaches for crude oil fouling have emerged, i.e., deterministic and threshold models. Threshold models have gained more attention due to their fewer adjustable parameters. The stability or compatibility of crude oils has a substantial impact on asphaltene deposition, which is a major contributor to fouling. However, incorporating this factor into fouling models has received little attention. The inclusion of parameters for inorganic fraction and ageing has increased predictability by accurately estimating the fouling thickness. The use of CFD to analyze fouling mechanisms is promising, particularly for complex geometries. The dynamic and moving boundary modeling approach has potential to broaden the applicability of fouling models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.