Abstract

Intrinsic transcriptional noise induced by operator fluctuations is investigated with a simple spin-like stochastic model. The effects of transcriptional fluctuations in protein synthesis are probed by coupling transcription and translation by an amplificative interaction. In the presence of repression a new term contributes to the noise, which depends on the rate of mRNA production. If the switch decay time is small compared with the mRNA life time, the noise is also small. In general the damping of protein production by a repressive agent occurs linearly but fluctuations can show a maximum at intermediate repression. The discrepancy among the switch decay time, the mRNA degradation, and protein degradation is crucial for the repressive control in translation without large fluctuations. The noise profiles obtained here are in quantitative agreement with recent experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.