Abstract

The mathematical models reported in the literature so far have been found using Center of Sums (CoS) defuzzification method only. It appears that no one has found models using Center of Area (CoA) or Center of Gravity (CoG) defuzzification method. Although there have been some works reported to deal with modeling of fuzzy controllers via Centroid method, all of them have in fact used CoS method only. In this paper, for the first time mathematical models of the simplest Mamdani type fuzzy Proportional Integral (PI)/Proportional Derivative (PD) controllers via CoG defuzzification are presented. L-type and Γ-type membership functions over different Universes of Discourse (UoDs) are considered for the input variables. L-type, Π-type and Γ-type membership functions are considered for the output variable. Three linear fuzzy control rules relating all four input fuzzy sets to three output fuzzy sets are chosen. Two triangular norms namely Algebraic Product (AP) and Minimum (Min), Maximum (Max) triangular co-norm, and two inference methods, Larsen Product (LP) and Mamdani Minimum (MM), are used. Properties of the models are studied. Stability analysis of closed-loop systems containing one of these controller models in the loop is done using the Small Gain theorem. Since digital controllers are implemented using digital processors, computational and memory requirements of these fuzzy controllers and conventional (nonfuzzy) controllers are compared. A rough estimate of the computational time taken by the digital computer while implementing any of these discrete-time fuzzy controllers is given. Two nonlinear plants are considered to show the superiority of the simplest fuzzy controller obtained using CoA or CoG defuzzification method over the simplest fuzzy controller obtained using CoS method and reported recently. Real-time implementation of one of the developed controller models is done on coupled tank experimental setup to show the feasibility of the developed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call