Abstract

The new tritopic triaminoguanidine-based ligand 1,2,3-tris[(pyridine-2-ylmethylidene)amino]guanidine (H2pytag) was synthesized. The reaction of a mixture of cobalt(II) chloride and cobalt(II) perchlorate with the ligand H2pytag in pyridine solution leads to the formation of the trinuclear cobalt(II) complex [Co3(pytag)(py)6Cl3]ClO4. Three octahedrally coordinated high-spin cobalt(II) ions are linked through the bridging triaminoguanidine backbone of the ligand leading to an almost equilateral triangular arrangement. The magnetic properties of the complex were investigated by magnetic measurements, variable-temperature, variable-field magnetic circular dichroism (MCD) spectroscopy, and density functional theory as well as ab initio calculations. A rather strong antiferromagnetic exchange interaction between the cobalt(II) centers of ca. -12 cm-1 is determined together with a strong local anisotropy. The single-ion anisotropy of all three cobalt(II) centers is found to be easy-plane, which coincides with the tritopic ligand plane. MCD measurements and theoretical investigations demonstrate the presence of rhombic distortion of the local Co surrounding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call