Abstract

Designing motor vehicle safety systems requires knowledge of whole body kinematics during dynamic loading for occupants of varying size and age, often obtained from sled tests with postmortem human subjects and human volunteers. Recently, we reported pediatric and adult responses in low-speed (<4 g) automotive-like impacts, noting reductions in maximum excursion with increasing age. Since the time-based trajectory shape is also relevant for restraint design, this study quantified the time-series trajectories using basis splines and developed a statistical model for predicting trajectories as a function of body dimension or age. Previously collected trajectories of the head, spine, and pelvis were modeled using cubic basis splines with eight control points. A principal component analysis was conducted on the control points and related to erect seated height using a linear regression model. The resulting statistical model quantified how trajectories became shorter and flatter with increasing body size, corresponding to the validation data-set. Trajectories were then predicted for erect seated heights corresponding to pediatric and adult anthropomorphic test devices (ATDs), thus generating performance criteria for the ATDs based on human response. This statistical model can be used to predict trajectories for a subject of specified anthropometry and utilized in subject-specific computational models of occupant response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.