Abstract
AbstractA series of computer simulations has been carried out on bovine pancreatic trypsin inhibitor using various models to mimic the effects of explicit bulk solvent on the structure of the protein. The solvent properties included are the polarization of the solute by the polar bulk solvent and the restraining effect on the motional freedom of the solute due to frictional drag at the solvent–protein surface interface. The former has been included by using a distance–dependent dielectric permittivity to screen the electrostatic interactions, whereas the latter is simulated by adding a limited number of solvent molecules near the protein surface. To achieve the proper mobility of the water molecules, their motion was restrained by adding a harmonic restraining force. It was found that a very small force constant was sufficient to model the static and dynamical behavior of the fully solvated solute, but that it was necessary to include enough explicit waters to occupy the first solvation shell. © 1992 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.