Abstract

The solidification of hot-stage turbine blades made from Rene N4 nickel-base superalloy has been modeled to show the morphology of porosity and the local changes in solute concentration. The key task of the present study was the calculation of the solid-liquid phase equilibria of this 9-component nickel-base superalloy from the thermodynamic values of these phases. The Gibbs energies of the solid and liquid phases were obtained from those of the 36 binaries using the Muggianu and Kohler methods of extrapolation. The phase equilibrium data were then used to compute the change in fraction solid with temperature, initially using the complete mixing approximation (Scheil equation). The predicted freezing range was somewhat longer than measured. A modified Scheil equation was derived assuming incomplete mixing. Assuming 60 pct mixing of the solute, the calculated freezing range agreed with experiments. Fraction solid temperature allowed the detailed morphology of the“mushy”zone to be predicted. Using measured dendrite spacings and assuming the crystals to grow in a cubic array, the shape of the crystals and, consequently, the size of the liquid channels were predicted as a function of position. Hence, computation of the rate of fluid flow in the channels (from the known changes of temperature with time) allowed the pore morphology to be inferred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.