Abstract
Context. Solar near-relativistic electrons (>30 keV) are observed as discrete events in the inner heliosphere following different types of solar transient activity. Several mechanisms have been proposed for the production of these electrons. One candidate is related to solar flare activity. Other candidates include shocks driven by fast coronal mass ejections (CMEs) or processes of magnetic reconnection in the aftermath of CMEs. Aims. We study eleven near-relativistic (NR) electron events observed by the Advanced Composition Explorer (ACE) between 1998 and 2005 with the aim of estimating the roles played by solar flares, CME-driven shocks, and processes of magnetic restructuring in the aftermath of the CMEs in the injection of NR electrons. The main goal is to infer the underlying injection profile from particle observations at 1 AU, as well as the interplanetary transport conditions. Methods. We used Monte Carlo simulations to model the transport of particles along the interplanetary magnetic field. By taking the angular response of the LEFS60 telescope of the EPAM instrument onboard ACE into account, we were able to deconvolve the transport effects from the observed intensities, and thus infer the solar injection profile. Results. In this set of events, we have identified two types of injection episodes: short ( 1 h). Short injection episodes seem to be associated with the flare processes and/or the reconnection phenomena in the aftermath of the CME, while time-extended episodes seem to be consistent with injection from CME-driven shocks. Conclusions. We find that there is no single scenario that operates in all the events. The interplanetary propagation of NR electrons can occur both under strong scattering and under almost scatter-free propagation conditions and several injection phases (related to flares and/or CMEs) are possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.