Abstract
Abstractsocial networks Online provide a globally available, large-scale infrastructure for people to exchange information and ideas. A topic of great interest in internet research is how to model this information exchange and, in particular, how to model and analyze the effects of interpersonal influence on processes such as information diffusion, influence propagation, and opinion formation. Recent empirical studies indicate that, in order to accurately model communication in online social networks, it is important to consider not just relationships between individuals, but also the frequency with which these individuals interact. We study a model of opinion formation in social networks proposed by De Groot and Lehrer and show how this model can be extended to include interaction frequency. We prove that, for the purposes of analysis and design, the opinion formation process with probabilistic interactions can be accurately approximated by a deterministic system where edge weights are adjusted for the probability of interaction. We also present simulations that illustrate the effects of different interaction frequencies on the opinion dynamics using real-world social network graphs.KeywordsOpinion DynamicsSocial InfluenceComplex NetworkAgent-based Modeling
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.