Abstract

[Structure: see text]. Ab initio calculations were used to study the S(N)2 reactions of the CH3OCH2I molecule with a methoxide ion (CH3O-) and a methanol molecule by systematically building up the reaction system with explicit incorporation of the methanol solvent molecules. For the reaction of CH3OCH2I with a methoxide ion, the explicit incorporation of the methanol molecules to better solvate the methoxide ion led to an increase in the barrier to reaction. For the reaction of CH3OCH2I with a methanol molecule, the explicit incorporation of the methanol molecules led to a decrease in the barrier to reaction because of an inclination of this reaction to proceed with the nucleophilic displacements accompanied by proton transfer through the H-bonding chain. The H-bonding chain served as both acid and base catalysts for the displacement reaction. A ca. 10(15)-fold acceleration of the methanol tetramer incorporated S(N)2 reaction was predicted relative to the corresponding methanol monomer reaction. The properties of the reactions examined are discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.