Abstract

African swine fever (ASF) is a virulent and lethal disease affecting domestic pigs and wild boars, with serious implications for biodiversity, food security, and the economy. Since its reemergence in Europe, ASF has become widespread, and Singapore reported its first ASF outbreak in its wild boar population. To understand the transmission dynamics in Singapore’s urban landscape, an agent‐based spatiotemporal model was designed to mechanistically model the wild boar dispersal and their interactions for ASF transmission. We investigated the impacts of wild boar dispersal capacity and carcass removal actions on the spatiotemporal dynamics of disease transmission. The model predictions were validated using observed wild boar mortality reports in Singapore and suggested multiple disease entry points into our wild boar population. Our simulations estimated that the ASF outbreak in Singapore would peak within 3 weeks and lasts for less than 70 days. Carcass‐mediated transmission was evident with epidemic reoccurrence through infectious carcasses accounting for 18%–75% of the iterations. Increasing wild boar dispersal capacity expanded the geographic extent of ASF infection, potentially spreading further inland. Simulated carcass removal and decontamination measures slightly reduced the epidemic duration by up to 13.5 days and reoccurrence through infectious carcass by 10.8%. Carcass removal and decontamination efforts, along with identifying and blocking high‐risk areas (e.g., dispersal corridors), are important in controlling the transmission of ASF through contaminated fomites and limiting the dispersal of infected animals. Establishing surveillance programmes and enhancing detection capabilities are also crucial for the successful management and control of infectious diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.