Abstract

Modeling and simulation of a commercial size unit for hydrocracking of an atmospheric residue (312 °C+) in a slurry-phase reactor are reported. The model of the industrial reactor is formulated taking into account axial and radial gradients of the state variables: composition and temperature. The mathematical model was partially discretized with finite central differences in the positional derivatives generating a matrix system of ordinary differential equations which was solved by a Runge-Kutta method. The hydrocracking reaction kinetic model is based on lumping technique and hydrotreating reactions kinetics are described by Langmuir-Hinshelwood and power-law approaches. All the intrinsic kinetic parameters and correlations used in the simulations were taken from the literature. Dynamic and steady-state simulations were performed with the objective to find a distribution of composition and temperature in the reactor as a function of time. Also a parametric sensitivity study was elaborated in order to analyze the effects of uncertainties of model parameters in the dynamic and steady-state model responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.