Abstract

Theoretical modeling and inversion approach of both active and passive microwave remote sensing for lunar surface exploration are presented herewith, as a report of recent reaserch progress Refs. [1-6] in our laboratory. Using a layered media model, multi-channel brightness temperatures of lunar regolith media are numerically simulated and applied to inversion of lunar regolith layer thickness, which is one of the tasks of China's first Chang-E project. Using the inverted regolith layer thickness, the models of solar wind flux, optical maturity (OMAT) and TiO<sub>2</sub> content in regolith layer with Clementine UVVIS multispectral data are employed to evaluation of global <sup>3</sup>He abundance. To explore the potential utilities of lower frequency radar pulse for lunar exploration, a theoretical model of lunar regolith layer and Mueller matrix solution of pulse radiative transfer are developed to numerical simulation of radar pulse echoes. To numerically simulate the image of lunar surface in SAR (synthetic aperture radar) technology, the triangulated irregular network is utilized to divide the undulated surface into discrete triangle meshes as a digital surface topography, and the SAR image of inhomogeneously undulated lunar surface is generated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.