Abstract

Amorphous solids, such as certain polymers, alloys, and polymer-based composites,are increasingly used materials in engineering components and thus, their fatigue behavioris of utmost importance. The article presents a unified approach suitable for modeling bothisothermal high cycle and low cycle fatigue behavior. The emphasis is placed on the ductilefatigue in which fatigue damage represents the material degeneration during the creation ofmicro-cracks governing majority of the total fatigue life (up to 95%). The model’s capability fortechnologically important polycarbonate (PC) polymer is addressed. The results, in accordancewith experimental observations, favor ductile fatigue behavior, i.e. damage fields remain smallfor most of the fatigue life and do not cause the macroscopic stress reduction. Due to thisproperty, fatigue life of an entire structural element can be evaluated by exploiting singlelocations at which the fatigue damage decisively emerges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call