Abstract

Biogas has been considered as an alternative renewable energy, and raw biogas needs to be upgraded in order to be used as vehicle fuels or injected into the natural gas grid. In this work, the conceptual process for biogas upgrading using aqueous choline chloride (ChCl)/urea (1:2 on a molar basis) was developed, simulated and evaluated based on the commercialized software Aspen Plus. Reliable thermophysical properties and phase equilibria are prerequisite for carrying out process simulation. In order to carry out the process simulation, the thermophysical properties of ChCl/Urea (1:2) and its aqueous solutions as well as the phase equilibria of gas-ChCl/Urea (1:2), ChCl/Urea (1:2)-H2O and gas-ChCl/Urea (1:2)-H2O were surveyed and evaluated. After evaluation, the consistent experimental data of these thermophysical properties were fitted to the models embedded in Aspen Plus. The properties needed but without available experimental results were predicted theoretically. The Non-Random Two-Liquid model and the Redlich-Kwong equation (NRTL-RK) model were used to describe the phase equilibria. The equilibrium approach was used for process simulation. Sensitivity analysis was conducted to determine the reasonable operating parameters. With a set of reasonable operating conditions, the effects of ChCl/Urea (1:2) content on the total energy utilization, the diameters and pressure drops of absorber and desorber as well as the environmental assessment of the process were studied. The simulation results showed that, with the addition of ChCl/Urea (1:2), the total energy utilization decreased by 16% compared to the process with pure water, and the diameters of both absorber and desorber decreased with increasing content of ChCl/Urea (1:2). The process using aqueous ChCl/Urea (1:2) was more environmentally benign than that with pure water. Therefore, aqueous ChCl/Urea (1:2) is a promising solvent for biogas upgrading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.