Abstract

Biological neural system can be considered as a series of biochemical reactions and signal transmission. It is important to provide an intuitive representation of the neural system to biologists while keeping its computational consistency. In this paper, we propose a method to exploit Hybrid Petri Net (HPN) for intuitive representation and quantitative modeling. The HPN is an extension of Petri Nets and represented by a directed, bipartite graph in which nodes are either discrete/continuous places (such as ion channels) or discrete/continuous transitions (such as phosphorylation), where places represent conditions and transitions represent activities. It can easily model the interactions among receptors, ionic flows (such as calcium), G-proteins, protein kinases and transcription factors that are very complicate in terms of the dynamics of all participants and their correlations. We demonstrate that, in the biological neural system, it is possible to translate and map these complex phenomena into HPNs in a natural manner. In our model, the dynamic properties of the neural signal processing can be examined, especially the interactions among neural modulators and signal transduction pathways. With such a mechanism model in hand, our ability to collaborate with neural scientists is greatly enhanced so as to simulate and examine the robustness of the neural transmission under the local biochemical perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.